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Dipartimento di Fisica, Università di Genova and CNR/INFM, Via Dodecaneso,
33, 16146 Genova, Italy

E-mail: giulia.rossi@fisica.unige.it and ferrando@fisica.unige.it

Received 18 July 2008, in final form 3 September 2008
Published 30 January 2009
Online at stacks.iop.org/JPhysCM/21/084208

Abstract
Nanoparticles can have unusual, low symmetry or non-crystalline shapes. Since structure
determines nanoparticle physical and chemical properties, many efforts have been devoted to
predict what are the most stable structural motifs depending on cluster size and composition.
The global optimization of the 3N-dimensional potential energy surface of a nanocluster is
nevertheless a very difficult computational problem. Here we depict the scenery of the global
optimization strategies applied to the study of nanoclusters, focusing on genetic and
Basin-hopping approaches. Moreover, several strategies to improve Basin-hopping efficiency
are discussed and compared through the optimization of test-systems with different size and
composition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: the global optimization issue in
nanocluster science

Global optimization problems have raised alot of interest in
the last decades, involving a very broad spectrum of research
fields. Logistic problems, like transport managing; computer
science problems, like microcircuits or network design;
biological problems, like protein folding studies; all of them
can be reduced to the same theoretical formulation, namely
finding the lowest lying minimum of a given, high-dimensional
function f (X). The function to be minimized, from time
to time represents the length of the resistive connections in
a microchip, or the time requested to drive between two big
port cities, or the free energy of a molecule seeking its native
configuration. Whatever the problem to be solved, several
strategies have been developed to computationally locate, in
an as short as possible time, the putative global minimum of f .

The search for the lowest potential energy configuration
of an atomic nanocluster is a global optimization problem.
One of the key aspects of the study of cluster potential energy
surfaces (PES), is the number of local minima—that is, of
stable configurations—that lie on the PES. How many are they?
How do their numbers increase with cluster size? If it was

possible to explore all of them, the global minimum would
directly derive from a trivial comparison of the values assumed
by f in the local minimum configurations. But unfortunately
this is not the case. The number of local minima on the PES of
a Lennard-Jones (LJ) cluster with size N = 100, according to
the last estimates [1], should be larger than 1040. And what is
more impressive, it is predicted to increase with cluster size by
an exponential function.

In computational complexity theory, problems are
classified into P, NP, NP-complete and NP-hard problems (see
figure 1), according to the computational resources required
to solve them. Details are beyond the scope of the present
paper, but we can recall here that the P class consists of
all those decision problems (expecting a YES/NO answer)
that can be solved by a computer in an amount of time
that is polynomial with respect to the size of the input.
NP problems consist of all those decision problems whose
positive solution can be verified in polynomial time. NP
problems are designated as NP-complete if the algorithm
used to solved them can also solve all other NP problems.
The popular traveling salesman problem belongs to the NP-
complete class. Finally, NP-hard problems are the non-
decisional version of the NP-complete problems, since a
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Figure 1. On the left, a schematic representation of P and NP problems. On the right, the exponential growth of the number of local minima
on the surface of a Lennard-Jones cluster, as increasing cluster size.

polynomial time algorithm for these problems would solve also
the NP-complete problem. In 1985 Wille and Vennik reduced
the optimization of the PES of an homogeneous cluster,
modeled by a two-body potential, to the non-decisional version
of the traveling salesman problem [2], thus demonstrating
that the global optimization of cluster PES is an NP-hard
problem. Greenwood then generalized [3] the proof to the case
of heterogeneous clusters.

The rate of growth of the number of minima lying on the
PES depend on the model potential used. As an example,
figure 1 shows the increasing of the number of minima
versus size in small Lennard-Jones clusters. Quite a simple
theory [4–6] suggests that the number of local minima nmin

on the PES increases exponentially. If the system is large
enough to be divided into m equivalent subsystems of N atoms
each, and within the assumption that every subsystem has
independent stable configurations, then:

nmin(m N) = nmin(N)m . (1)

The equation has thus the exponential solution:

nmin(N) = eαN (2)

where α is a system-dependent constant. Moreover,
geometrical information still needs to be included in the
evaluation of the number of minima lying on the PES. A
cluster made up of N atoms has a Hamiltonian that is
invariant to (a) all the permutations of atoms of the same
species and (b) to the inversion of all coordinates through a
space-fixed origin. This means that, given a cluster with a
fixed geometrical arrangement, one can think of N! totally
equivalent configurations. In other words, each of them is
a different point in configuration space corresponding to the
same minimum energy value. This number has to be reduced
by the order of the symmetry point group of the structure, h.

When dealing with heterogeneous clusters [7], the
situation gets more complicated. The presence of two
different types of atoms leads to the possibility of isomers
based on the permutation of unlike atoms, as well as the
regular geometrical isomers (with different skeletal structures).
Jellinek and Krissinel [8] introduced the term homotops to
describe AmBn alloy cluster isomers, with a fixed number of
atoms (N = m + n) and composition (m/n ratio), which have

the same geometrical arrangement of atoms, but differ in the
site labelling, namely the way in which the A and B atoms
are arranged. Neglecting symmetry considerations, homotops
usually have different potential energies, and an efficient
global optimization tool is supposed to explore as large a
number as possible of homotops. As the number of homotops
increases combinatorially with cluster size, global optimization
(in terms of both geometrical isomers and homotops) is an
extremely difficult task. Ignoring point group symmetry, a
single geometrical isomer of an N-atom cluster, AmBn, will
give rise to

Nhomotops = N !
n!m! = N !

n!(N − n)! (3)

homotops. For a 20-atom A10B10 cluster of a given skeletal
structure, for example, there are 184 756 homotops, though
many may be symmetrically equivalent.

The paper is structured as follows. In section 2
a quick review of the more common global optimization
strategies, namely simulated annealing, genetic and basin-
hopping algorithms, is presented. In section 3 we will describe
how the performances of the standard basin-hopping algorithm
can be improved. Section 4 is devoted to the application of
the developed methodologies to the optimization of four test-
systems. Finally, conclusions are presented in section 5.

2. Methods for the global optimization of cluster PES

The global optimization of clusters consists in finding, size and
chemical composition being fixed, the structural and chemical
arrangement of the lowest lying minimum on the PES. With the
term funnel one usually refers to a funnel-shaped collection of
local minima pertaining to the same structural motif. Cluster
PESs are often rough and multiple-funnel surfaces. The
sampling of minima on such complicate surfaces is a very hard
task. Molecular dynamics (MD) approaches are not feasible
except for the very small size clusters, since the timescale
of an exhaustive exploration of the potential energy surface
would definitely exceed the accessible computing timescales
of MD. Efforts in the direction of the acceleration of the MD
walk have been done in order to reproduce rare events (see, for
example, the accelerated MD by Voter [9, 10] applied to the
study of metal-on-metal diffusion), nevertheless the pure MD
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approach never resulted in a successful optimization strategy.
However, since the final goal of global optimization is the
location of the lowest lying minimum, MD can be thought as
a redundant method to address this aim, including information
on the dynamics of the cluster which go beyond the scopes of
the search. With a complementary approach, methods based
on the totally random generation of cluster configurations
have been developed. As an example, we can mention
the Big Bang method developed by Jackson [11, 12], who
optimized the structure of clusters generating random, highly-
compressed configurations of atoms and then relaxing them
via a gradient-based algorithm. By iterating the procedure
through several millions of searches and shaping the initial
compressed configuration according to different aspect-ratios,
the authors succeeded in optimizing the structure of N = 20–
27 Si clusters.

In the following, the most common and effective global
optimization methods will be described [13]. Most of them
combine elements deriving from a more physical, dynamics-
like approach with elements deriving from random sampling.
All the algorithms are supposed to run unbiased searches,
meaning that the starting cluster configuration has random
atomic coordinates. Moreover, atoms are not constrained to
any lattice position, the discreteness of the three-dimensional
space being limited to the computational sensitivity.

2.1. Simulated annealing

In simulated annealing (SA), the system under study is
equilibrated at high temperature and then cooled by a
Monte Carlo–Metropolis procedure. As the temperature
decreases, cluster atoms are progressively frozen in their
equilibrium positions. Provided that the temperature decreases
logarithmically with time, this leads to the coincidence
between free and potential energy minimum [13]. Simulated
annealing has two major drawbacks: it is a very time-
consuming algorithm, and it can quite easily fail in locating
the global minimum configuration of multiple-funnel surfaces.
It is possible, indeed, that during cooling the system remains
trapped in a free energy minimum that differs from the global
minimum of the PES.

Both traditional Newton and Langevin molecular dynam-
ics approaches (see [14] and references therein) have been
proposed instead of MC–Metropolis within the simulated
annealing scheme. A more recent version of SA has been
developed and called conformational simulated annealing
(CSA). CSA has been successfully applied both to clusters [15]
and biological molecules and proteins [16–18]. In CSA,
every point in a configuration space is given the energy of its
nearest local minimum by implementing a local minimization
procedure. A bank of configurations is considered, and subsets
of this bank are mutually modified to get new candidate
structures. The role of temperature in SA is here played by
an order parameter which is used to progressively shrink the
area of the configuration space explored.

2.2. Genetic algorithms

Genetic algorithms (GA) have been first proposed by John
Holland in the 1970s, and since then they have been

used in a variety of fields, including chemistry, physics,
economy, computer science, and more. These algorithms
are inspired by genetic and evolutionary theories. It is
indeed meaningful to refer to populations of individuals
(clusters), each one represented by a set of chromosomes
(spatial atomic coordinates), living and evolving according
to natural selection and adaptability rules. A keyword in
this context is fitness: it measures how much an individual
matches the final requirement, namely having the lowest
possible potential energy. In cluster optimization, generation
after generation, the individuals that better fit this requirement
are selected as parent clusters, in order to preserve the best
genetic information and progressively refine the population’s
characteristics. Natural selection consists indeed in dropping
not promising evolutionary branches. Pioneering applications
of the genetic strategy to the global optimization of cluster PES
were proposed by Hartke [19, 20], who optimized the structure
of small Si clusters.

2.2.1. The standard GA design and the SAGA code. After
the population initialization, a basic genetic algorithm (see for
example the work by Deaven and Ho [21] for an application
to fullerene cluster minimization) loops around the following
steps:

• fitness evaluation,
• mating,
• mutations,
• acceptance or rejection.

Here we are going to describe the main features of the SAGA
algorithm, developed by Rapallo and fruitfully exploited
for the optimization of a variety of homogeneous and
heterogeneous metallic nanoclusters [22, 23]. A block diagram
of SAGA is depicted in figure 2.

Local minimization. The SAGA code implements a L-BFGS
local minimization procedure (proposed by Nocedal [24] and
based on a quasi-Newton approach). Local minimization is
performed upon every new individual generated by mating and
mutations, so that only the genetic code corresponding to local
minima of the PES becomes available to the next generations.

Speciation into subpopulations. A common problem with the
genetic approach is the progressive lack of genetic diversity,
which is associated with the concentration of the whole
population into the same funnel of the PES. In order to
overcome this problem, SAGA code splits up the initial
population into several subpopulations, letting them evolve
in quite an independent way. The algorithm is thus forced
to explore different funnels of the potential energy surface
contemporarily. The introduction of subpopulations is of
fundamental importance in preserving as long as possible,
during evolution, the diversity of the genetic material of
the population. The formation of subpopulations is called
speciation of the original population, and is based on the
definition of a geometrical distance between clusters based on
Voronoi cells in the 3N-dimensional space.

The usual configuration of SAGA has Nind = 200
individuals, split into Nsubpop = 5 subpopulations. During a
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Figure 2. A block diagram of the SAGA code.

single run, clusters can migrate between subpopulations. This
migration process is regulated by a frequency of migration,
so that the transfers of clusters among subpopulations take
place all together, and the number of clusters in each
subpopulation is constant. The highest fitness clusters are
the most likely to be transferred, with the aim of spreading
good genetic information. Once the migration process has
taken place, evolution continues for a number of generations.
Subpopulations are then reformed by speciation.

Mating. Within every subpopulation, a couple of parent
individuals generates a pair of new clusters. Parent selection
is made according to a selective pressure: a high selective
pressure means that only the high fitness individuals are likely
to be chosen for mating, while a low selective pressure means
that also intermediate or poor fitness individuals have some
probability to be chosen. For further details about the possible
mating strategies, see [25].

Mutations. Several different mutations are applied to
the offspring before they are included in the new cluster
generation. Some of them involve slight changes in the digits
composing cluster chromosomes [25]. As it is expected that the
homotops of a heterogeneous cluster have different energies,
the exchange mutation has been introduced in the algorithm.
This involves exchanging the spatial positions of two atoms of
different species in the cluster, and it is applied with a certain

Figure 3. On the left, the PES deformation in BH transforms the
original surface in a staircase surface. On the right, zoom in the grey
area: if no deformation were applied, the move from S to D could be
rejected with probability 1 − e(ES−ED)/kB T . Thanks to BH local
minimization, the acceptability rule compares ẼD and ẼS, thus
accepting the move with probability 1.

probability, for example to every new cluster resulting from
the mating process.

2.3. Basin-hopping algorithm

Deformation methods alter the shape of the PES by a
transformation that reduces the number of local minima or
changes their appearance. From a mathematical point of
view, such a transformation could change the position and
depth of minima, and once located the global minimum of
the transformed surfaces, an effective reverse mapping of the
surface is required [26]. Basin hopping (BH) belongs to this
family, but the local minima of the original PES are exactly
reproduced in the transformed surface, so that no reverse
mapping is needed. BH has been used to globally optimize
a variety of systems, like Lennard-Jones clusters [27–29],
molecular clusters, peptides, polymers, and glass-forming
solids [26].

The BH transformed landscape is obtained by applying
a local minimization procedure to every point in the
configuration space:

Ẽ(X) = min {E(X)} . (4)

In a 2D representation, this would correspond to transforming
the energy function into a staircase function, as illustrated in
figure 3. During cluster optimization, the sampling of the
configuration space is performed by means of a move upon
atom coordinates. Moves from a starting configuration, S,
to a destination configuration, D, can be accepted or refused
according to a standard Metropolis algorithm:

if ẼD � ẼS −→ p = 1 (5)

if ẼD > ẼS −→ p = e−(ẼD−ẼS)/KBT (6)

where p indicates the probability of acceptance of the move,
and T the fictitious temperature of the system. The importance
of the applied transformation appears here quite clearly: as
shown in figure 3, if no local minimization was performed,
the move from S to D could be rejected even if the ẼD <

ẼS condition was satisfied. In BH algorithm, temperature
plays a key role, driving the sampling of configuration space
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according to the Boltzmann distribution. BH effectiveness in
dealing with multiple-funnel surfaces has also been proved,
as in the case of LJ38. This test-bed cluster has a double-
funnel PES, with a strict competition between the fcc and
the icosahedral (Ih) structural motifs. Wales and co-workers
have demonstrated [30, 31, 26] that the transformation of
equation (4) causes a broadening of the thermodynamics on the
PES, meaning that changes in the global free energy minimum
are smoothed on the transformed surface, effectively affecting
the occupation probabilities of the different basins in favour of
the fcc motif.

In the following, the move strategies implemented in our
previous works [25, 22, 23] to select destination configurations
are listed.

Moves. During optimization, the candidate destination states
are obtained performing a perturbation move upon the starting
configurations. In the following, some possible moves are
described.

Single move. A single atom is chosen randomly and displaced
within a spherical shell centered in its initial position. The
new position is chosen accordingly to a uniform spherical
distribution. The shell minimum radius is usually fixed to 0,
while the maximum one is related to the lattice parameter of the
chemical species involved. For the metals considered here, it is
usually set equal or slightly lower than half the first neighbour
distance.

Shake move. It consists in applying the single move to every
atom of the cluster. This is the move that we proved to have
the highest efficiency and that we mostly used during the
optimization of binary metal clusters.

Ball move. A single atom is displaced to a random position
within cluster volume.

Shell move. It is especially designed to get a better arrangement
of the cluster surface. A single surface atom is displaced to a
random position within a spherical shell roughly corresponding
to the external atomic layer of the cluster.

Bond move. This move is designed to act on the weakly
bounded atoms. The lowest coordinated atom is displaced
according to one of the moves listed above.

Brownian move. Atoms follow very short Langevin dynamics
(typically 250 simulation steps, with a time step set to 5 fs) at
high temperature. Brownian move proved to be very efficient
for the optimization of large clusters (N > 200).

High-energy atoms move. A threshold energy is fixed, so
that atoms with a lower energy are are displaced according
to the shake move, atoms with a higher energy are displaced
according to the bond move.

Exchange move. In analogy with what happens in genetic
algorithms, exchange moves can also be applied during the
optimization of nanoalloy clusters. This move is especially
useful when the species in the cluster have the tendency to
form mixed bonds. In this class of systems, the configurations
differing for an exchange move have quite similar energies,
and the optimization of the chemical order has to be led at low
temperatures.

2.4. Does memory help to find the global minimum?

All the strategies described up to now have the common
characteristic to explore the PES without saving any
information about the path followed. The PES is explored
relying upon the Boltzmann distribution, a local minimization
procedure, and a set of tunable parameters such as the moves
probabilities in BH or the mating and mutation operators in
GA. Nevertheless, memory would seem to be an integral
component of any search that deserves to be called intelligent,
also from a biological and evolutionary point of view. This idea
has been first translated into a global optimization tool with
Taboo Search (TS) [32]. According to TS, the optimization
code has to retain a memory of the PES regions already visited,
so as to avoid falling there again. Taboo regions are indeed the
forbidden PES areas.

An alternative way to use memory as a search tool
has been proposed by Hansmann and Wille [33]. Their
method, called energy landscape paving (ELP), is based on the
definition of a histogram function, H (q, t) and of a weight
function f (H (q, t)), where q is an order parameter and t
is a measure of the time elapsed by the beginning of the
optimization. The transformed surface upon which the Monte
Carlo search takes place is therefore:

Ẽ = E + f (H (q, t)). (7)

The weight of a local minimum state, p(Ẽ) = e−Ẽ/kB T ,
decreases with the time the system stays in that minimum.
ELP could be interpreted as a peculiar deformation method, the
deformation changing at every step of the optimization. ELP
has some similarities with TS, as recently visited regions are
not likely to be revisited immediately. Nevertheless, moves
towards known funnels are not forbidden, and this could be
very important, depending on the connectivity characteristic
of the PES. Some hub funnel [34] could in fact be connected
to several different funnels via different transition states, and
TS could in principle allow to explore just one of these
escaping path. Within ELP, revisitation moves are given an
exponentially lower weight.

Another possible strategy to overcome this problem
has been proposed by Goedecker [35]. According to his
minima mopping (MH) algorithm, PES is deformed by local
minimizations as for BH. The move from a starting state ES

to a destination state ED is accepted if the energy of the
destination local minimum rises by less than Ediff compared
to the starting minimum. The parameter Ediff is continuously
adjusted during simulation so that the rate of acceptance is kept
fixed at 50%. What is crucial in MH is the way moves are
performed. The idea underlying this procedure is that instead
of disfavouring the choice of already visited local minima,
it is far more convenient to favour the escaping from such
minima. This indeed prevents us from penalizing crossing
through important hub funnels. In MH, moves consist in
short molecular dynamics simulations. Atoms velocities are
initialized according to the value Ekinetic, the kinetic energy
of the cluster. The escaping from already visited basins is
favoured by imposing an high value for Ekinetic. This parameter
is adjusted dynamically during the simulation, in such a way
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that half the number of MD runs lead to never explored
minima. As for ELP and TS, MH uses an order parameter to
distinguish whether or no a minimum has been already visited.

3. Improving BH performances

Here we are going to discuss some possible strategies to
improve the performances of the standard BH algorithm
dealing with the PES of heterogeneous nanoclusters.

3.1. Order parameter-based search

In cluster or molecular applications of TS and ELP, the search
for the global minimum is driven both in the potential energy
and order parameter space, so as to combine energetic and
geometric information. The identification of all the competing
structural families is an important goal of global optimization
approaches based on semi-empirical models, as results can
successively be refined by more reliable first-principle energy
minimizations.

The choice of the order parameter is a delicate issue. Any
prior knowledge about the system under study can be used to
get a proper order parameter, nevertheless the search has to
preserve its unbiased character. In the following, the order
parameters chosen for the optimization of homogeneous and
heterogeneous, free and supported clusters are shown.

Common-neighbour analysis. Quite a common instrument for
cluster structural characterization is called common-neighbour
analysis [36] (CNA). A CNA signature, consisting of three
integer numbers (r, s, t), is assigned to each pair of nearest
neighbour nn atoms A and B. r is the number of common
neighbours of A and B, s is the number of nn bonds among
the r common neighbours, and t is the length of the longest
chain that can be formed with the s bonds.

CNA signatures are good candidates as order parameters
during global optimizations. Their distribution immediately
allows us to distinguish among the well known Ih, decahedral
(Dh), and crystalline structural families. Of course, this
geometric parameter does not distinguish among chemical
ordering, that could play an important role in determining
the lowest-energy structural families of heterogeneous clusters.
Moreover, depending on the metals considered, signatures to
be used as order parameters have to be chosen carefully. In
table 1 signature values are reported for the more common
structural motifs.

Heterogeneous bonds. Quite a simple way to take into account
the cluster chemical arrangement consists in using the number
of heterogeneous bonds as an order parameter. Four main types
of mixing patterns can be identified for nanoalloys. Core–shell
segregated nanoalloys consist of a shell of one type of atom
(B) surrounding a core of another (A). These clusters will be
denoted AcoreBshell. Sub-cluster segregated nanoalloys consist
of A and B sub-clusters, which may share a large interface
with a high degree of mixing, or a smaller neck. Mixed A–
B nanoalloys may be either ordered or random (i.e a solid
solution). Multishell nanoalloys may present layered or onion-
like alternating ABA shells. A–B bonds are usually maximized

Table 1. The percentage of (5, 5, 5), (4, 2, 1) and (4, 2, 2) signatures
for Ih, Dh, and TO magic clusters.

N Structure (5, 5, 5) % (4, 2, 1) % (4, 2, 2) %

13 Ih 28.57 0.00 0.00
19 Double Ih 33.82 0.00 0.00
38 TO 0.00 41.66 0.00
55 Ih 10.3 0.00 38.5
75 Dh 1.25 28.2 20.4
79 TO 0.00 50.0 0.00

147 Ih 5.17 17.24 38.79

by mixed configurations or multishell structures, while perfect
AcoreBshell structures favour the formation of A–A bonds.

Surface contact. During global optimization of metal clusters
supported on a surface, other order parameters are required.
The number of cluster atoms laying in contact with the oxide
surface can be a good order parameter to distinguish between
different epitaxies (as the (100) and the (111) epitaxies of the
fcc Pd, Ag, Au, Ni, Co clusters [37, 38]).

The order parameter space is not necessarily a one-
dimensional space. In the following, one and two order
parameters will be used.

3.2. The HISTO algorithm

The Monte Carlo procedure implemented by ELP, as described
in section 2.4, does not perform any local minimization.
This has proved to be of fundamental importance for BH,
GA, and other optimization strategies. We thus developed
a new optimization algorithm called HISTO, with local
minimizations and all the key features of the memory/order
parameter-based searches. HISTO can be considered an
improvement of the standard BH procedure, relying on:

• PES transformation into the local minima staircase
function,

• sampling of configuration space performed through simple
displacements of cluster’s atoms,

• an order parameter introducing a memory contribution to
the search,

• a method to favour the escape from already visited states
and to unfavour the jump into already visited states1.

HISTO draws a histogram in the order parameter space,
normalized to the [0, 1] interval, so as to retain memory of the
distribution of the visited states in the order parameter space. In
figure 4 an example is shown of a one-dimensional histogram
shape modification during the optimization. Here δ indicates
the width of histogram bars, while hi denotes the height of
the i th bar. The probability of accepting the move from the
minimum ES to the minimum ED, is evaluated according to
the following rule:

pSD = e�E∗/kB T where �E∗ = ED − ES + w(hD − hS).

(8)

1 It is also possible to run a version of the HISTO code favouring the escape
from already visited funnels in a way which does not depend on the destination
state, similarly to what happens in MH. This could actually favour the jumps
into hub funnels, whose population is crucial in order to access all the remote
funnels of the PES.
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Figure 4. Comparison of a simulation employing the HISTO algorithm (left column) with a standard BH simulation (right column). As the
number of Monte Carlo steps increases, the distributions in the order parameter space broaden. In the case of the HISTO simulation, a wider
and more homogeneous distribution is obtained. The arrows indicate regions of the order parameter space that are reached by the HISTO
simulation but not by the BH simulation, after the same number of Monte Carlo steps.

For w = 0, the algorithm reduces to standard BH, while
increasing w one gives an increasing weight to the memory
contribution.

3.3. Excitable walkers

The second new optimization strategy developed has been
called parallel excitable walkers (PEW). The algorithm is
described in detail elsewhere [39]. Two walkers k and z,
located at the minima Xk and Xz are neighbours in a one-
dimensional order parameter (p) space if

|p(Xk) − p(Xz)| � δ. (9)

The relation can be simply extended to a two-dimensional
order parameter space. If a walker laying in its starting position
S has at least one neighbour, its transformed potential energy
EkS is substituted by

E∗
kS = EkS + Eexc (10)

with Eexc > 0. This means that the walker acts as being excited
to an energy level placed higher than EkS by the quantity
Eexc. PEW reduces to BH for nw = 1. Neighbour walkers
have a high probability of accepting energetically unfavourable
moves, so that they are likely to increase their distance in the
order parameter space. On the other hand, isolated walkers
accept mainly energetically favourable moves. In this way,
walkers dynamically repel each other, but their mobility is
not hindered by a static repulsion term, so that they can
move efficiently across distinct regions of the order parameter
space, which are possibly related to different funnels. Since
interfunnel moves are possible thanks to the excitation energy
Eexc, the PEW algorithm can be used at very low temperatures,
thus being very efficient also in reaching the bottom of a given
funnel.

4. Results

In the following, the performances of the two new BH-
based algorithms, namely HISTO and PEW, are compared to
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Figure 5. Global minima (left) and competing minima (right) for the three gas-phase systems treated in the text. In Ag32Cu6, external Ag
atoms are represented by the small spheres, whereas inner Cu atoms are represented by the large spheres. Two competing minima are shown
for Ag32Cu6. The last one has exactly the same p(5,5,5) as the global minimum.

standard BH performances. Two Lennard-Jones homogeneous
clusters, LJ38 and LJ75, and two heterogeneous metallic cluster,
Ag32Cu6 and Au90Cu90, have been chosen as test-systems
(see figure 5). Shake move is adopted by all the algorithms.
Algorithms start from a random configuration and run NMC =
106 MC steps, each one corresponding to an attempted move,
namely to a local minimization. The time requested by the
local minimization is almost 100% of cpu time spent at each
step. In the PEW case, it is worth noting that the number
of MC steps per walker is NMC/nw. Each time the (known)
global minimum is found, the simulation is restarted from a
random configuration. Ns denotes the number of times the
global minimum has been found within 106 MC steps.

LJ38

Lennard-Jones potential has been implemented with the
parameters of argon, ε = 119 K and σ = 3.4 Å. Both
in PEW and HISTO runs, the percental occurrence of the
(5, 5, 5) CNA signature, p(5,5,5), is used as an order parameter.
The global minimum of LJ38 is an fcc truncated octahedron
(see figure 5), for which p(5,5,5) = 0. This cluster lies at
the bottom of a deep, narrow funnel, and it is in competition
with structures pertaining to a five-fold symmetry funnel. The
best minimum belonging to this funnel is the slightly distorted
decahedron shown in figure 5, whose order parameter value is
p(5,5,5) = 8.16%.

The results of the optimizations of LJ38 are reported
in figure 6. The BH algorithm is mostly effective in the
range 100–300 K, where it obtains a number of successful
optimizations Ns ≈ 400, which means an average of 2500 MC
steps to reach the global minimum. To make a comparison of
our BH with the BH results shown by Wales and Doye [28],
we have calculated the frequency of successful optimizations
within 5000 MC steps, and found a percentage close to 90%.
According to Wales and Doye [28], 4 over 5 runs of 5000 MC
steps were able to find the global minimum of LJ38.

The PEW algorithm is mostly effective at low tempera-
tures, in the range 10–50 K. PEW performances are described
in detail in [39]. The fraction of successful optimizations that
locates the GM within 5000 MC steps is of more than 99% (to
be compared also to the 96% of the basin-hopping occasional
jumping algorithm [40]). At its best performance, the PEW
algorithm visits a very small average number of minima
(≈300) before reaching the global minimum. This number is
even lower than for the minima Hopping algorithm [35], for
which the best performance is 410.

Figure 6. Results of the optimizations of LJ38. Temperature, on the x
axis, is plotted on a logarithmic scale. Black stars, repeated in both
the graphs, refer to BH algorithm. On top, the comparison between
HISTO and BH performances. Open squares refer to a weight
w = 0.1 eV, triangles to w = 0.3 eV and circles to w = 0.5 eV. The
HISTO efficiency is improved if the histogram is periodically reset
during optimization. Open stars, full circles and open crosses
correspond to a weight w = 0.5 eV, with histograms reset
respectively every 5 × 104, 104 and 5 × 103 MC steps. Results related
to 104 step-resetting are averaged over four optimization runs. On the
bottom are the comparison between PEW and BH performances. The
best BH performances are placed in the temperature range
100–300 K, while PEW best results are obtained below 100 K. Open
rhombi, triangles and circles refer to PEW algorithm with nw = 3,
δ = 0.02 and Eexc = 0.04, 0.06 and 0.08 respectively. Open squares
correspond to nw = 4, δ = 0.015 and Eexc = 0.06.

The best HISTO performances are placed in an
intermediate temperature range, 50–100 K. The number of
successes is competing with that by the PEW algorithm, though
slightly smaller. Results indicate that the HISTO code is able to
locate the global minimum more than 700 times every million
steps, that is about every 1400 MC steps. Results are improved
if during the optimization run the histogram is periodically
reset. This is somehow predictable, because HISTO code is
just designed in order to subvert the occupation probabilities
induced by the thermodynamic of the system, and finally leads
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Figure 7. On the top the comparison between HISTO and BH. Black
crosses and stars refer to standard BH, respectively to a single
106 MC steps run and 200 runs of 5 × 103 MC steps. On top, BH is
compared to HISTO algorithm. Standard HISTO is represented by
open circles and rhombi. HISTO with resetting of the histogram
every 104 steps is represented by open triangles. Open squares
represent HISTO with the double p(4,2,2) and p(5,5,5) order parameter.
On the bottom, BH is compared to PEW algorithm. Open squares
represent PEW in the double order parameter space. Open rhombi
and circles refer to PEW with the single order parameters.

us to draw a uniform distribution of minima in the order
parameter space.

LJ75

In this case, the global minimum is a Marks truncated
decahedron [41] (see figure 5), competing with icosahedral
structures which are at the bottom of a much wider funnel.
Data about the optimization of LJ75 are collected in figure 7.
In several runs (106 MC steps) at different temperatures,
the global minimum has been reached by BH only once.
The difficulty of BH to get into the right funnel from a
random configuration was already pointed out by Wales and
Doye [28]. In order to overcome this difficulty, we run
200 short simulations (5000 MC steps) starting from different
random configurations, so that some of them can hopefully
start in the decahedral funnel. In this way the global minimum
is found more easily, up to three times at temperature T =
50 K.

The PEW algorithm (p(5,5,5) order parameter) performs
much better, counting ≈15 successful searches within 106 MC
steps. Another possible strategy to help the exploration of
the decahedral funnel during the search consists in changing
the order parameter from p(5,5,5) to p(4,2,2). The (4, 2, 2)
signature is typical of the pairs of atoms placed at interfaces
between tetrahedra in both Ih and Dh structures. The (4, 2, 2)
signature is indeed absent in TO clusters, and present, but with

very different percentages, in decahedra and icosahedra. PEW
simulations using p(4,2,2) have been indeed able to locate the
global minimum structure up to 20 times within a million MC
steps, which is the best result collected so far.

Concerning HISTO performances, both resetting and not
resetting histogram codes have been used, and both single
(p(5,5,5)) and double (p(4,2,2) and p(5,5,5)) order parameters
have been tested. Standard HISTO with a weight w = 0.5
and p(5,5,5) gets a number of successes that is only slightly
better than BH (global minimum is found 4 or 5 times in one
million steps, in the temperature range 50–100 K), and the
same happens also resetting the histogram every 104 steps.
Increasing the weight to w = 0.7 leads to the result Ns = 7
for T = 50 K. Using the double p(4,2,2) and p(5,5,5) order
parameter, and a weight w = 0.7, the higher number of
successes is again Ns = 7.

Ag32Cu6

According to our model potential the global minimum
of Ag32Cu6 is the six-fold pancake (see figure 5), a
polyicosahedral cluster of symmetry group D6h in which the
Cu atoms form a non-compact inner hexagonal ring. The ratio
between the number of mixed Ag–Cu nn bonds and the total
number of nn bonds is chosen as order parameter, denoted
by pmb. pmb is able to discriminate between core–shell and
alloyed structures, and also to discriminate between core–shell
structures having either a compact or a non-compact Cu core.
At the chemical composition considered here, pmb takes values
in the interval [0.2, 0.4]. The global minimum is at the bottom
of a narrow funnel, and has a large number of mixed bonds,
with pmb = 0.38. The competing structures in figure 5 have
compact Cu cores and pmb = 0.31, being thus well separated
from the global minimum in the order parameter space. The
results are shown in figure 8, where BH, PEW and HISTO
algorithms are compared.

BH is mostly effective in the range 1000–2000 K, while
the best performance of PEW is from 100 to 800 K. Very good
results are obtained for wide ranges of parameters, 2 � nw �
8, and Eexc = 0.4 eV. Comparing the best performances of
PEW and BH, we see that the former is about 3.5 times faster.

For Ag32Cu6 optimization, the best performances have
been obtained by the HISTO code. Resetting the histogram
every 104 and 5 × 103 steps, it has been able to locate the
global minimum structure up to 187 times in one million steps,
that means that, on the average, 5348 local minimizations are
needed before finding the Ag32Cu6. It is worth noting here
that the performances of HISTO code, with the reset option
switched on, are suddenly dumped as temperature is increased
beyond 1000 K. The exploration of a wider portion of the
PES due to the higher temperature which indeed contrasts the
filling of histogram bars, and it can be expected that at higher
temperatures results could be improved by a longer reset time.

Large heterogeneous clusters

The global optimization of large heterogeneous clusters (N >

100 atoms) is a very hard task. Nevertheless, global
optimization approaches can be useful in identifying all the
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Figure 8. Results of the optimization of Ag32Cu6. Full black rhombi,
repeated in both the graphs, refer to BH optimizations. At the top, the
comparison between HISTO and BH performances. Full squares and
triangles refers respectively to weights w = 6.0 and 5.0 eV. As in
LJ38 case, HISTO performances can be improved if the histogram is
periodically reset. Open squares and triangles refer respectively to
HISTO with w = 6.0 eV and histogram resetting every 104 and
5 × 103 steps. At the bottom, the comparison between PEW and BH
performances. Squares refer to PEW with nw = 5, δ = 0.02,
Eexc = 0.5. Triangles refer to PEW with nw = 3, δ = 0.02,
Eexc = 0.7, while circles correspond to nw = 3, δ = 0.02,
Eexc = 0.5.

competing structural families, providing candidates whose
chemical order and structure can be further refined by seeded
optimization runs. The algorithms we described so far are
able to deal with cluster sizes up to 500 atoms. The use of
structural order parameters allows us to locate and classify the
structural motifs corresponding to low-energy values on the
PES. Here we report about the optimization of a Au90Cu90

cluster by the PEW algorithm. The order parameter chosen
for both the optimization runs is the (5, 5, 5) CNA signature. 4
and 8 walkers are employed, with Eexc = 0.5 eV. During the
optimization runs, minima are classified according to the value
or the order parameter and collected, as shown in figure 9.
The PES of the cluster contains at least four different funnels:
(a) the fcc funnel (corresponding to p(5,5,5) = 0, as no local
five-fold symmetries are present in the skeletal structure of the
cluster) (b) the decahedral funnel (0.5 < p(5,5,5) < 1) (c) the
Mackay icosahedral funnel (the best structure located within
this funnel is a perfect 147-atom plus a Mackay shell) and
(d) the anti-Mackay funnel. The PEW optimization approach
is thus able to locate several competing funnels on the PES of
a large heterogeneous cluster.

Finally, the best configuration within each structural motif
can be further refined from the point of view of the pure
chemical ordering. As we mentioned at section 2.3, the
exchange move is especially effective in systems where the two

Figure 9. The best minima collected by two PEW optimization runs
for the Au90Cu90 cluster.

metal species have some tendency to mix. This is the case for
Au and Cu, which present three alloy stoichiometries in the
bulk and only a slight tendency of Au to the segregation at the
surface of Cu. Once the best candidates within each funnel
of the PES are located by the global optimization approach,
they are used as seeds for some thousand steps of optimization
using the exchange move only, at low temperature. This
allows us to refine the chemical order of the cluster, obtaining
results which are by far more satisfying than those obtained
by running the exchange and the shake (or Brownian) move
during the unseeded optimization. The reasons for this failure
can be explained as follows. When running low-T PEW
optimizations, the use of the exchange move allows a very fast
convergence to the lowest lying minima of the starting funnel,
thus making it more and more difficult to escape from it.

5. Conclusions

In this paper we outlined the scenery of the global
optimization of the potential energy surface of nanoclusters,
both homogeneous and heterogeneous. Several computational
approaches to the problem were analysed, ranging from GA to
BH-like approaches. Two algorithms, PEW and HISTO, both
based on a BH architecture, were used for global optimization
of four test-systems and their performances were compared
to the BH performances. Both the algorithms were able to
locate the global minimum configuration of the test clusters
up to eight times more than the standard BH. Finally, some
general trends for the choice of the appropriate temperatures,
order parameters and move schemes are offered so as to be able
to effectively optimize the PES of different nanoparticles.
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